Self-Protected Low Side Driver with Temperature and Current Limit

65 V, 7.0 A, Single N-Channel

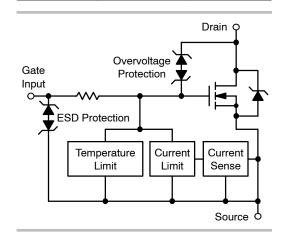
NCV8406A, NCV8406B

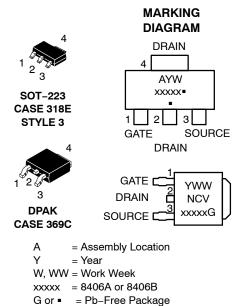
NCV8406A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Over Voltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- These Devices are Faster than the Rest of the NCV Devices
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications


- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial



ON Semiconductor®

www.onsemi.com

V _{DSS} (Clamped)	R _{DS(on)} TYP	I _D TYP (Limited)
65 V	210 mΩ	7.0 A

(Note: Microdot may be in either location) ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V _{DSS}	60	Vdc
Gate-to-Source Voltage	V _{GS}	±14	Vdc
Drain Current Continuou	s I _D	Internally	/ Limited
Total Power Dissipation – SOT–223 Version @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2)	PD	1.25 1.81	W
Total Power Dissipation – DPAK Version @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2)	PD	1.31 2.31	W
Thermal Resistance – SOT-223 Version Junction-to-Soldering Point Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	R _{θJS} R _{θJA} R _{θJA}	7.0 100 69	°C/W
Thermal Resistance – DPAK Version Junction-to-Soldering Point Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	R _θ js R _θ ja R _θ ja	1.0 95 54	°C/W
Single Pulse Inductive Load Switching Energy (Starting T _J = 25°C, V _{DD} = 50 Vdc, V _{GS} = 5.0 Vdc, I _L = 2.1 Apk, L = 50 mH, R _G = 25 Ω)	E _{AS}	110	mJ
Load Dump Voltage (V_{GS} = 0 and 10 V, R _I = 2 $\Omega,$ R _L = 7 $\Omega,$ t _d = 400 m	s) V _{LD}	75	V
Operating Junction Temperature Range	TJ	-40 to 150	°C
Storage Temperature Range	T _{stg}	-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
 Surface mounted onto minimum pad size (100 sq/mm) FR4 PCB, 1 oz cu.
 Mounted onto 1" square pad size (700 sq/mm) FR4 PCB, 1 oz cu.

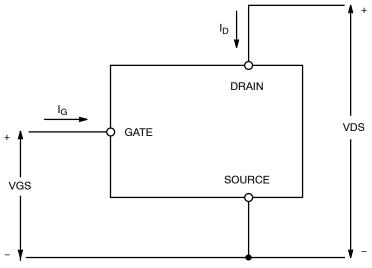


Figure 1. Voltage and Current Convention

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Clamped Br (V_{GS} = 0 V, I_D = 2 mA)	eakdown Voltage	V _{(BR)DSS}	60	65	70	V
Zero Gate Voltage Drain Current ($V_{DS} = 52 \text{ V}, V_{GS} = 0 \text{ V}$)		I _{DSS}	-	22	100	μΑ
Gate Input Current ($V_{GS} = 5.0 \text{ V}, V_{DS} = 0 \text{ V}$)		I _{GSS}	_	30	100	μΑ
ON CHARACTERISTICS						
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 150 \ \mu$ A) Threshold Temperature Coefficient		V _{GS(th)}	1.2 -	1.66 4.0	2.0	V -mV/°C
Static Drain-to-Source On-Resistance (Note 3) $(V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 25^{\circ}C)$		R _{DS(on)}	-	185	210	mΩ
Static Drain-to-Source On-Resistance (Note 3) ($V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 25^{\circ}\text{C}$) ($V_{GS} = 5.0 \text{ V}, I_D = 2.0 \text{ A}, T_J @ 150^{\circ}\text{C}$)		R _{DS(on)}	-	210 445	240 520	mΩ
Source–Drain Forward On Vo $(I_S = 7.0 \text{ A}, V_{GS} = 0 \text{ V})$	Itage	V_{SD}	-	0.9	1.1	V
SWITCHING CHARACTERIS	TICS (Note 6)					
Turn-on Delay Time	$\begin{array}{l} {\sf R}_{\sf L} = 6.6 \; \Omega, \; {\sf V}_{in} = \; 0 \; to \; 10 \; {\sf V}, \\ {\sf V}_{\sf DD} = 13.8 \; {\sf V}, \; {\sf I}_{\sf D} = 2.0 \; {\sf A}, \; 10\% \; {\sf V}_{in} \; to \; 10\% \; {\sf I}_{\sf D} \end{array}$	td _(on)	-	127	-	ns
Turn-on Rise Time	R_L = 6.6 Ω, V_{in} = 0 to 10 V, V_{DD} = 13.8 V, I_D = 2.0 A, 10% I_D to 90% I_D	t _{rise}	_	486	_	ns
Turn-off Delay Time	R_L = 6.6 Ω, V_{in} = 0 to 10 V, V_{DD} = 13.8 V, I_D = 2.0 A, 90% V_{in} to 90% I_D	td _(off)	-	1600	-	ns
Turn-off Fall Time	R_L = 6.6 $\Omega,$ V_{in} = 0 to 10 V, V_{DD} = 13.8 V, I_D = 2.0 A, 90% I_D to 10% I_D	t _{fall}	Ι	692	-	ns
Slew Rate ON	R_L = 6.6 $\Omega,$ V_{in} = $$ 0 to 10 V, V_{DD} = 13.8 V, I_D = 2.0 A, 70% to 50% V_{DD}	$\mathrm{dV}_{\mathrm{DS}}/\mathrm{dT}_{\mathrm{on}}$	-	79	-	V/μs
Slew Rate OFF	R_L = 6.6 $\Omega,$ V_{in} = 0 to 10 V, V_{DD} = 13.8 V, I_D = 2.0 A, 50% to 70% V_{DD}	$\mathrm{dV}_{\mathrm{DS}}/\mathrm{dT}_{\mathrm{off}}$	-	27	_	V/μs
SELF PROTECTION CHARAC	CTERISTICS (Note 4)					
Current Limit	$ \begin{array}{l} V_{DS} = 10 \; V, \; V_{GS} = 5.0 \; V, \; T_J = 25^\circ C \; (\text{Note 5}) \\ V_{DS} = 10 \; V, \; V_{GS} = 5.0 \; V, \; T_J = 150^\circ C \; (\text{Notes 5}, 6) \\ V_{DS} = 10 \; V, \; V_{GS} = 10 \; V, \; T_J = 25^\circ C \; (\text{Notes 5}) \end{array} $	I _{LIM}	5.0 3.5 6.5	7.0 4.5 8.5	9.5 6.0 10.5	A
Temperature Limit (Turn-off)	V _{GS} = 5.0 V (Note 6)	T _{LIM(off)}	150	180	200	°C
Thermal Hysteresis	V _{GS} = 5.0 V	$\Delta T_{LIM(on)}$	-	10	-	°C
Temperature Limit (Turn-off)	V _{GS} = 10 V (Note 6)	T _{LIM(off)}	150	180	200	°C
Thermal Hysteresis	V _{GS} = 10 V	$\Delta T_{LIM(on)}$	-	20	-	°C
Input Current during Thermal Fault		I _{g(fault)}		5.9 12.3	-	mA
SD ELECTRICAL CHARACT	ERISTICS					
Electro Statio Discharge Can		ESD		1	1	L

Elec	tro-Static Discharge Capability	ESD				V	
	Human Body Model (HBM)		6000	-	-	l I	
	Machine Model (MM)		500	-	-		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 4. Fault conditions are viewed as beyond the normal operating range of the part.

5. Current limit measured at 380 μ s after gate pulse. 6. Not subject to production test.

TYPICAL PERFORMANCE CURVES

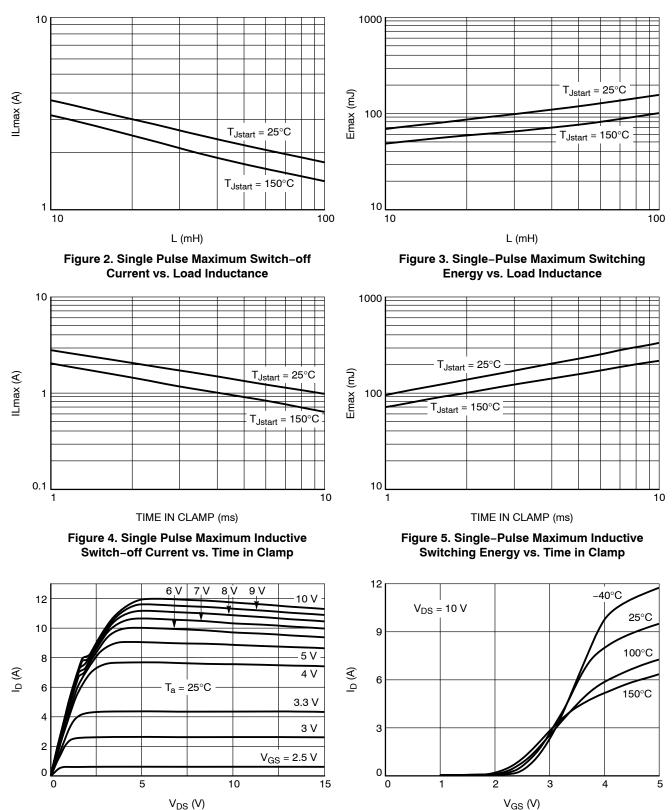
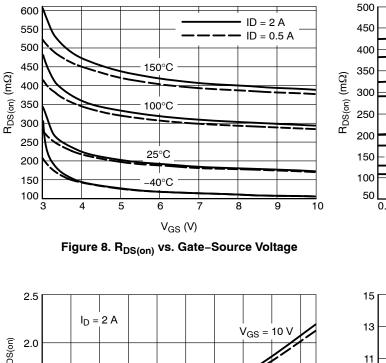



Figure 7. Transfer Characteristics

Figure 6. On-state Output Characteristics

TYPICAL PERFORMANCE CURVES

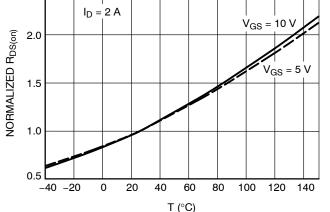
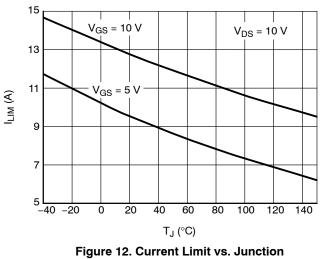
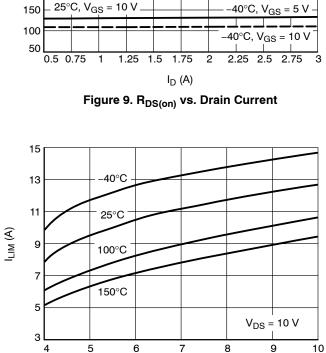




Figure 10. Normalized R_{DS(on)} vs. Temperature

25°C, V_{GS} = 5 V

 $150^{\circ}C, V_{GS} = 5 V$

 $150^{\circ}C, V_{GS} = 10 V$

 $100^{\circ}C, V_{GS} = 5 V$

100°C, V_{GS} = 10 V

Figure 11. Current Limit vs. Gate-Source Voltage

V_{GS} (V)

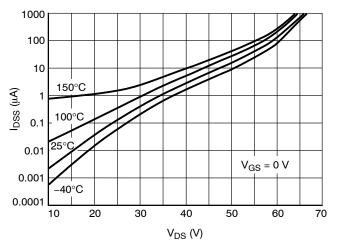
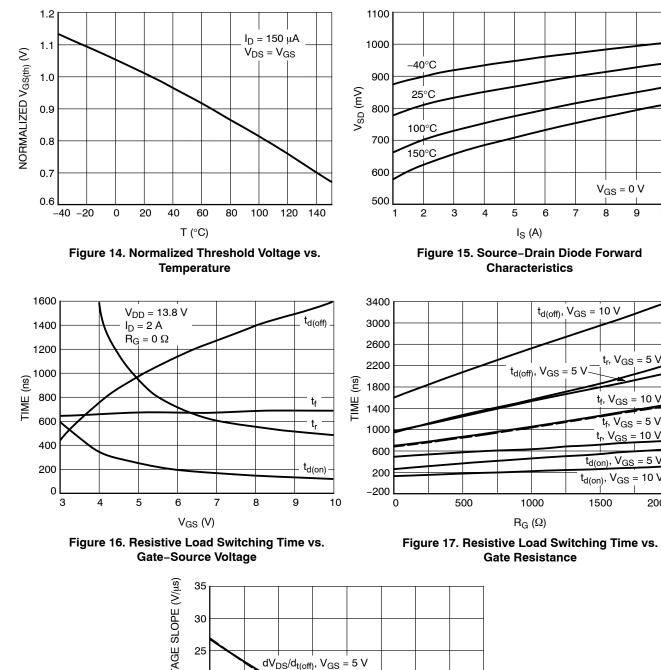
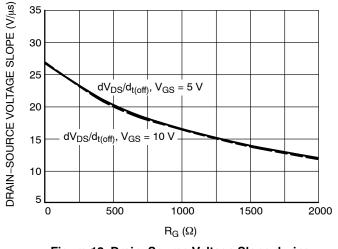
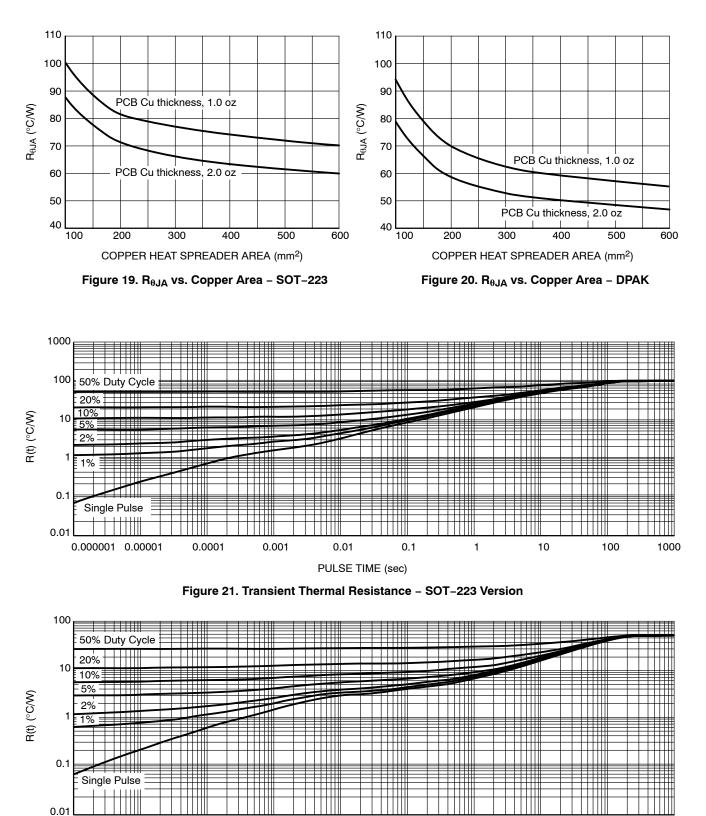



Figure 13. Drain-to-Source Leakage Current


TYPICAL PERFORMANCE CURVES

10


5

2000

TYPICAL PERFORMANCE CURVES

PULSE TIME (sec)

0.1

1

10

100

1000

0.01

0.000001 0.00001

0.0001

0.001

Figure 22. Transient Thermal Resistance – DPAK Version

TEST CIRCUITS AND WAVEFORMS

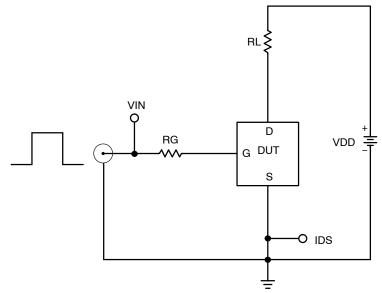


Figure 23. Resistive Load Switching Test Circuit

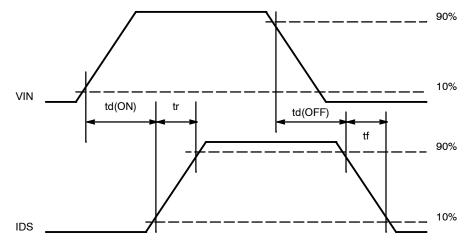


Figure 24. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

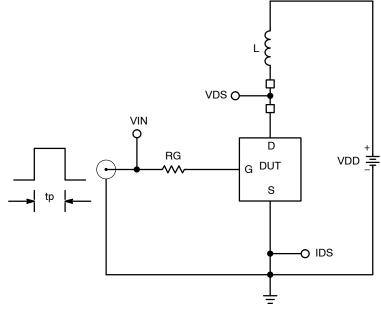
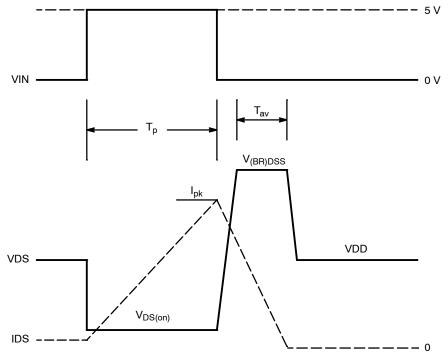
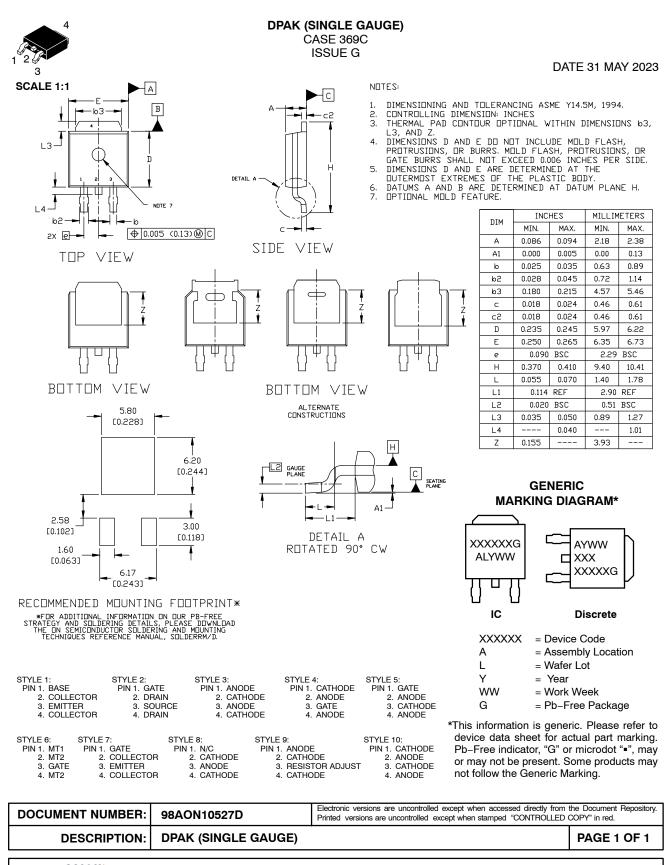



Figure 25. Inductive Load Switching Test Circuit



ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8406ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8406ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8406ADTRKG	DPAK (Pb-Free)	2500 / Tape & Reel
NCV8406BDTRKG	DPAK (Pb–Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ONSEM¹.

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales