

E34-2G4D11S Datasheet

2.4GHz TTL full-duplex wireless serial module

Chengdu Ebyte Electronic Technology Co.,Ltd.

Content

CHAPTER 1 PRODUCT OVERVIEW	
1.1 Product Introduction	
1.2 Features and functions	4
1.3 Scenarios	4
CHAPTER 2 SPECIFICATIONS	4
2.1 Limit parameters	4
2.2 WORKING PARAMETERS	5
CHAPTER 3 MECHANICAL DIMENSIONS AND PIN DEFINITIONS	6
CHAPTER 4 RECOMMENDED CONNECTION DIAGRAM	7
CHAPTER 5 DETAILED EXPLANATION OF FUNCTIONS	7
5.1 Module reset	7
5.2 AUX DETAILS	7
5.2.1 Serial port data output indication	8
5.2.2 Wireless transmit indication	8
5.2.3 The module is in the process of configuration	
5.2.4 AUX Considerations	9
CHAPTER VI WORKING MODE	9
6.1 Mode switching	9
6.2 HALF-DUPLEX MODE (MODE 0).	
6.3 Full-duplex mode (mode 1).	
6.4 RESERVATION MODE (MODE 2).	10
6.5 SET MODE (MODE 3).	
6.6 FAST COMMUNICATION 1EST	
CHAPTER 7 INSTRUCTION FORMATS	
7.1 Factory default parameters	
7.2 READING WORKING PARAMETERS	12
7.3 VERSION NUMBER READ	
7.4 RESET INSTRUCTIONS	
7.5 PARAMETER SETTING INSTRUCTIONS	13
CHAPTER 8 HARDWARE DESIGN	14
CHAPTER 9 FREQUENTLY ASKED QUESTIONS	14
9.1 The transmission distance is not ideal	14
9.2 The module is easily damaged	
9.3 The bit error rate is too high	15
CHAPTER 10 WELDING WORK GUIDANCE	15
CHAPTER 11 RELATED MODELS	

CHAPTER 12 ANTENNA GUIDE	16
CHAPTER 13 BULK PACKAGING METHODS	17
REVISION HISTORY	17
ABOUT US	17

Disclaimer

EBYTE reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this document or any part thereof without the express permission of EBYTE is strictly prohibited.

The information contained herein is provided "as is" and EBYTE assumes no liability for the use of the information. No warranty, either express or implied, is given, including but not limited, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by EBYTE at any time. For most recent documents, visit www.ebyte.com.

Chapter 1 Product Overview

1.1 Product Introduction

E34-2G4D11S is a wireless data transmission module that supports full-duplex communication, working in the 2.4~2.518GHz frequency band, TTL level output, using serial port for data transceiver and transmission, reducing none The threshold of line application.

The typical feature of E34-2G4D11S is high-speed transmission, which can

achieve full-duplex characteristics (two-way simultaneous sending and receiving) under a variety of baud rates, unlimited packet length, support uninterrupted transmission, and support file transfer.

The module has data encryption and compression capabilities. The data transmitted by the module over the air is random, and the data interception is meaningless through a rigorous encryption and decryption algorithm. The data compression function has the probability of reducing the transmission time, reducing the probability of interference, and improving reliability and transmission efficiency.

1.2 Features and functions

- Supports full-duplex feature at baud rate up to 57600 (simultaneous sending and receiving in both directions);
- Support uninterrupted transmission, unlimited packet length;
- Support file transfer;
- Maximum transmit power 11dBm, software multi-stage adjustable;
- Supports worldwide license-free ISM 2 4GHz band;
- The air rate automatically adapts to the baud rate;
- Support advanced GFSK modulation mode;
- Support low power mode for battery applications;
- Support 2.5~3.6 V power supply, greater than 3.3V power supply can ensure the best performance;
- Industrial standard design, support $-40 \sim +85$ °C at long-term use;
- PCB onboard antenna, built-in antenna no need for external antenna.

1.3 Scenarios

- Wearable devices;
- Smart home and industrial sensors, etc.;
- Security system, positioning system;
- Wireless remote control, drone;
- Wireless gaming remote control;
- Healthcare products;
- Wireless voice, wireless headphones;
- Automotive applications.

Chapter 2 Specifications

2.1 Limit parameters

The main means them	performance			
The main parameters	minimum	maximum	гетагк	
Supply voltage (V).	2.5	3.6	Permanently burns modules over 3.6V	
Blocking power (dBm).	-	10	The probability of burning at close range is small	
Operating temperature (°C).	-40	+85	Industrial grade	

2.2 Working parameters

		performance		e		
The r	nain parameters	minimu	Typical	maximu	remark	
		m	value	m		
Opera	ating voltage (V).	2.5	3.3	3.6	≥3.3V guaranteed output power	
Comm	unication level (V).		3.3			
Operatio	ng temperature (°C).	-40	-	+85	Industrial-grade design	
Operating frequency band (MHz).		2400	-	2518	ISM bands are supported	
	Emission current (mA).		50		Instantaneous power consumption	
power	Receive current (mA).		23			
consumptio					The software shuts down, and the configuration	
11	Sleep current (µA).		-		mode is not sleep mode	
Maximum	transmit power (dBm).	10.5	11.0	11.5		
Reception sensitivity (dBm).			-90		The air speed is 250kbps	
Air rate (bps).			Not		The software automatically optimizes and	
		-	adjustable	-	automatically adapts to the baud rate	

The main parameters	description	remark	
	120	Sunny and open environment, antenna height of 2.5 meters, air speed	
The reference distance	130m	250kbps	
Subcontracting	29 Btye	Maximum length of a single send	
Cache capacity	2048 Btye	Unlimited package length	
Modulation mode	GFSK		
Communication interface	UART serial	TTL level	
	port		
Encapsulation mode	SMD		
Interface mode	1.27mm		
Dimensions	12*19mm		
	PCB onboard	The emission last investigation of the second states (0.0	
Antenna interiace	antenna	The equivalent impedance is approximately 5002	

Chapter 3 Mechanical Dimensions and Pin Definitions

Pin serial number	Pin name	Pin orientation	Pin use
1	MO	Input (very weak	In conjunction with M1, the module is determined by 4 modes of operation (not
1	MO	pullup)	dangling, if not used grounded).
2	M1	Input (very weak	In conjunction with M0, the module is determined by the four modes of
2	MI I	pullup)	operation (not dangling, if not used grounded).
3	RXD	input	TTL serial input, connected to an external TXD output pin.
4	TXD	output	TTL serial output connected to an external RXD input pin.
			Used to indicate the operating status of the module (can be suspended)
5	AUX	output	The user wakes up the external MCU and outputs a low level during power-on
			self-test initialization.
6	VCC		Module power supply positive reference, voltage range: 2 $5 \sim 3.6$ V DC
7	GND	input	Module ground
8	RESET	input	Module reset pin, active low
9	NC		Reserved feet

Chapter 4 Recommended Connection Diagram

Chapter 5 Detailed Explanation of Functions

5.1 Module reset

After the module is powered on, the AUX will immediately output a low level, and perform hardware self-test, as well as set the working mode according to user parameters;
In this process, AUX remains low, after which AUX outputs high and starts working normally according to the working mode formed by M1 and M0;

Therefore, the user needs to wait for the AUX rising edge as the starting point for the normal operation of the module.

5.2 AUX Details

- AUX for wireless sending and receiving buffer indication and self-test indication;
- It indicates whether the module has data that has not been transmitted wirelessly, or whether the wireless data that has been received has not yet been sent out in its entirety through the serial port, or whether the module is in the process of initializing the self-test.

5.2.1 Serial port data output indication

• Used to wake up an external MCU in hibernation;

模块串口外发数据时, AUX引脚时序图

5.2.2 Wireless transmit indication

• Empty buffer: The data of the internal 2048-byte buffer is written to the wireless chip (automatic packetization). When AUX=1, the user continuously initiates data less than 2048 bytes and does not overflow;

When AUX=0, the buffer is not empty: the data of the internal 2048 byte buffer has not yet been written to the wireless chip and the transmission is turned on, at this time the module may be waiting for the user data to end the timeout, or the wireless packet transmission is in progress;

[Note] :AUX=1 does not mean that all the serial port data of the module has been transmitted wirelessly, and the last packet of data may be transmitted.

模块接收串口数据时,AUX引脚时序图

5.2.3 The module is in the process of configuration

• Only when resetting and exiting sleep mode;

自检期间,AUX引脚时序图

5.2.4 AUX Considerations

- Function 1 and function 2 above, the output low level is preferred, that is, if any one of the output low conditions is met, the AUX output low level; The AUX outputs high when all low conditions are not met.
- When the AUX output is low, it means that the module is busy, and the working mode detection will not be carried out at this time; When the AUX output of the module is high within 20ms, the mode switching work will be completed.
- After the user switches to the new working mode, at least 2ms after the AUX ascending edge is required for the module to actually enter the mode; If the AUX is consistently high, then the mode switching will take effect immediately.
- The user enters another mode from mode 3 (sleep mode) or during the reset process, the module resets the user parameters, during which the AUX output is low.

Chapter VI Working Mode

The module has four operating modes, set by pins M0 and M1; The details are shown in the following table:

Mode (0-3).	M0	M1	Introduction to the pattern	remark
0 Half-duplex mode	0	0	Serial port open, wireless open, transparent transmission, half-duplex operation	The receiver must have the same address, channel, and baud rate
1 Full duplex mode	1	0	Serial port open, wireless open, transparent transmission, full-duplex operation	The receiver must have the same address, channel, and baud rate
2 Reservation mode	0	1	Reservation mode	Temporarily the same as mode 0
3 Set the mode	1	1	You can receive parameter setting commands	See the working parameters for details

6.1 Mode switching

• The user can combine M1 and M0 with high and low levels to determine the working mode of the module;

2 GPIOs of the MCU can be used to control mode switching;

When changing M1 and M0: If the module is idle, after 15-20ms, you can start working according to the new mode;

If the serial port data of the module has not been transmitted through the wireless, the new working mode can only be entered after the transmission is completed;

If the module receives wireless data and sends data out through the serial port, it needs to be sent before it can enter the new working mode;

So the mode switch can only be valid when AUX outputs 1, otherwise the switch will be delayed.

• For example, in mode 0 or mode 1, the user continuously enters a large amount of data and switches modes at the same time, and the switching mode operation at this time is invalid;

The module will process all user data before performing new pattern detection;

Therefore, the general recommendation is: detect the AUX pin output status, wait for the AUX output to be high and then switch for 2ms.

6.2 Half-duplex mode (mode 0).

type	When $M0 = 0$ and $M1 = 0$, the module operates in mode 0
launch	The module receives user data from the serial port, the module transmits wireless packets with a length of 29 bytes, and when the user enters data to 29 bytes, the module will start wireless transmission, at which point the user can continue to enter the data that needs to be transmitted. When the user needs to transmit fewer than 29 bytes, the module waits for 3 bytes of time, if no user data continues to enter, the data is considered to be terminated, at which time the module will send all packets wirelessly. When the module receives the first user data, the AUX output is low, and when the module puts all the data into the RF chip and initiates the transmission, the AUX output is high. At this point, it indicates that the last packet of wireless data has started the transmission, and the user can continue to enter up to 2048 bytes of data. Packets sent through mode 0 can only be received by receiving modules in mode 0, mode 1, and mode 2.
receptio n	The module keeps wireless reception turned on and can receive packets from mode 0, mode 1, and mode 2. After receiving the packet, the module AUX output is low, and the wireless data begins to be emitted through the TXD pin of the serial port, and after all the wireless data is output through the serial port, the module outputs the AUX high.
note	When a module transmits data, it cannot receive data. At the same time, when the module receives data, it cannot send data.

6.3 Full-duplex mode (mode 1).

type	When $M0 = 1$ and $M1 = 0$, the module operates in mode 1
	The module receives user data from the serial port, the length of the wireless packet transmitted by the module is 29 bytes, when the user input data reaches 29 bytes, the module will start wireless transmission, at which time the user can
	continue to enter the data that needs to be transmitted;
launch	When the bytes that the user needs to transmit are less than 29 bytes, the module waits for 3 bytes of time, if no user data continues to enter, the data is considered to be terminated, at which time the module will send all packets through the wireless;
	When the module receives the first user data, the AUX output is low, and when the module puts all the data into the RF chip and starts the transmission, the AUX output is high;
	At this point, it indicates that the last packet of wireless data has started the transmission, and the user can continue to enter up to 2048 bytes of data;
	Packets sent through mode 0 can only be received by receiving modules in mode 0, mode 1, and mode 2.
	The module has been turned on the wireless receiving function, which can receive packets from mode 0, mode 1, mode 2;
reception	After receiving the packet, the module AUX output is low, and the wireless data begins to be emitted through the TXD
	pin of the serial port, and after all the wireless data is output through the serial port, the module outputs the AUX high.
	When a module transmits data, it can receive data.
note	At the same time, when the module receives data, it can send data.

6.4 Reservation mode (mode 2).

type	When M0 = 0 and M1 = 1, the module operates in mode 2
launch	Equivalent to mode 0.

receptio Equivalent to mode 0. n

6.5 Set Mode (Mode 3).

type	When M0 = 1 and M1 = 1, the module operates in mode 3
launch	Wireless data cannot be transmitted.
reception	Unable to receive wireless data.
disposition	The configuration mode can be used for module parameter setting, using serial ports 9600, 8N1, through a specific instruction format to set the module working parameters.
note	When entering from the setup mode to other modes, the module will reconfigure the parameters, and during the configuration process, the AUX remains low; The output is high when finished, so it is recommended that the user detect the rising edge of the AUX.

6.6 Fast Communication Test

steps	Specific operations
1	Plug the USB test board (E15-USB-T2) into the computer to ensure that the driver is installed correctly; Plug in the mode selection jumper on the USB test board (i.e. M1=0, M0=0).
2	Select 3.3V power supply (module supports 2 5 \sim 3.6V).
3	Run the "Serial Debugging Assistant" software, select the correct serial slogan, observe the sending window and the corresponding receive window.

Chapter 7 Instruction Formats

• In the setting mode (mode 3: M0=1, M1=1), the list of supported instructions is as follows (when setting, only 9600, 8N1 formats are supported):

serial numb er	The directive format	Detailed instructions
1	C0+ operating parameters	The hexadecimal format sends C0+5 bytes of working parameters, a total of 6 bytes, which must be sent continuously (power-down saving).
2	C1+C1+C1	Three C1s are sent in hexadecimal format, and the module returns saved parameters, which must be sent continuously.
3	C2+ operating parameters	The hexadecimal format sends C2+5 bytes of working parameters, a total of 6 bytes, which must be sent continuously (power down is not saved).
4	C3+C3+C3	Three C3s are sent in hexadecimal format, and the module returns version information, which must be sent consecutively.
5	C4+C4+C4	Three C4s are sent in hexadecimal format, and the module will produce a reset that must be sent continuously.

7.1 Factory default parameters

Model	Factory default parameter value: C0 00 00 18 00 40									
Module model	frequency	address	channel	Air rate	baud rate	Serial port format	Transmit power			
E34-2G4D11S	2.4GHz	0x0000	0x00	Adaptive baud rate	9600	8N1	13mW			

7.2 Reading working parameters

The directive format	Detailed instructions	
C1+C1+C1	In sleep mode (M0=1, M1=1), issue a command (HEX format) to the module serial port: C1 C1 C1 C1 The module returns the current configuration parameters, such as: C0 00 00 18 00 40.	21

7.3 Version number read

The directive format	Detailed instructions
C3+C3+C3	In setup mode (M0=1, M1=1), issue a command (HEX format) to the module serial port: C3 C3 C3 The module returns the current configuration parameters, such as: C3 39 xx yy; The 39 here represents the module model (E39 series), xx is the version number, and yy refers to other features of the module.

7.4 Reset instructions

The directive format	Detailed instructions
----------------------	-----------------------

C4+C4+C4	In setup mode (M0=1, M1=1), issue a command (HEX format) to the module serial port: C4 C4 C4 The module will generate a reset; During the reset process, the module self-tests, the AUX output is low, after the reset is completed, the AUX output is high, and the module begins to work normally. At this point, you can switch modes or initiate the next command.
----------	--

7.5 Parameter setting instructions

	name		description							remark		
0	HEAD	Fixed 0x0 command	C0 or 0: 1	xC2 indicating that this frame data is a control					e 0xC0 or C2 he set para down. ne set param loss.	meters will eter will no	be saved by t be saved by	
1	ADDH	The mod	ule addı	ess is high l	oyte (default	t 00H).		00H-FI	FH			
2	ADDL	The mod	ule addı	ess is low b	ytes (defaul	t 00H).		00H-FI	FH			
		7	6	Serial p	ort check bit	t						
		0	0	8N1 (de	fault).				• 1 1	C1 (1) 1	6.4	
		0	1	801				commi	nication can	e of both sides be different	s of the	
		1	0	8E1					uneution eun			
		1	1	8N1 (eq	uivalent to (00).						
		5	4	3	TTL serial	port rate (bp	s).					
		0	0	0	The serial	port baud rate	e is 1200					
		0	0	1	The serial	port baud rate	e is 2400	The he	ud rata of hot	haidaa aftha		
3	SPED	0	1	0	The serial	port baud rate	e is 4800	commu	inication can	be different		
		0	1	1	The serial (default).	t). The serial port baud rate is 9600 The serial port baud rate and the wirele transmission parameters are independe				vireless bendent of each		
		1	0	0	The serial	The serial port baud rate is 19200			other, and do not affect the wireless transceiver			
		1	0	1	The serial	port baud rate	e is 38400	charact				
		1	1	0	The serial	port baud rate	e is 57600					
		1	1	1	The serial	port baud rate	e is 115200					
		2	1	0	Leave unu	sed		T4 :		it- 0		
									commended to	o write 0		
		Generic r	nodel									
	CILLN	7, 6, 5, 4	are reta	ined unused	l			It is rec	commended to	o write 0		
4	CHAN	Commun	ication	channel				00H~1	FH, a total of	16 channels;		
		3, 2, 1, 0	, defaul	t 00H (2400	MHz).			Corres	ponds to 2400) MHz + CHA	AN * /MHZ	
		7	Leave	e unused				It is rec	commended to	o write 0		
		6	Leave	e unused				It is rec	commended to	o write 0		
		5	4	3	Leave unu	sed		It is rec	commended to	o write 0		
		2	Leave	e unused				It is rec	commended to	o write 0		
5	OPTION	1	0	Transmi	t power (app	proximate).		The ex	ternal power	supply must p	provide more	
		0	0	11dBm	(default).			ensure	50mA current	r supply ripp	ollity, and le is less than	
		0	1	7dBm				100mV	;;	i sappij ripp		
		1	0	3dBm	1					· · · .	1 1	
		1	1	-1dBm					power transm power utiliza	tion efficienc	y is not high.	
			Illusti	ative exam	ple (meanir	ng of the ord	inal number	3 "SPED" I	oyte):			
The	binary bit o	f the byte		7	6	5	4	3	2	1	0	
Specific	values (user	configurati	on)	0	0	0	1	1	0	0	0	
Represents meaning				The serial port check The serial port baud rate is				te is 9600	Air	r-to-air rate a	laptive	

	bit is 8N1			
The corresponding hexadecimal	1		8	

Chapter 8 Hardware Design

- It is recommended to use a DC regulated power supply to power the module, the ripple coefficient of the power supply is as small as possible, and the module needs to be reliably grounded;
- Please note that the correct connection of the positive and negative poles of the power supply, such as reverse connection, may cause permanent damage to the module;
- Please check the power supply to ensure that between the recommended supply voltages, if the maximum value is exceeded, the module will be permanently damaged;
- Please check the stability of the power supply, the voltage can not fluctuate greatly and frequently;
- When designing the power supply circuit for the module, it is often recommended to retain more than 30% of the margin, and the whole machine is conducive to long-term stable work;
- The module should be as far away as possible from the power supply, transformer, high-frequency traces and other parts of electromagnetic interference;
- High-frequency digital trace, high-frequency analog trace, power routing must avoid the module below, if you really need to go through the module below, assuming that the module is soldered in the top layer, the top layer of the module contact part of the copper (all copper and well grounded), must be close to the digital part of the module and the wire is routed in Bottom Layer;
- Assuming that the module is welded or placed in the Top Layer, it is also wrong to arbitrarily route the Bottom Layer or other layers, which will affect the spurious and receiving sensitivity of the module to varying degrees;
- Assuming that there are devices with large electromagnetic interference around the module, it will also greatly affect the performance of the module, and it is recommended to be appropriately away from the module according to the intensity of the interference, and if the situation allows, appropriate isolation and shielding can be done;
- Assuming that there are large electromagnetic interference traces (high-frequency digital, high-frequency analog, power supply traces) around the module will also greatly affect the performance of the module, and according to the intensity of the interference, it is recommended to be appropriately away from the module, and if the situation allows, appropriate isolation and shielding can be done;
- If the communication line uses 5V level, it must be connected in series with 1k-5.1k resistors (not recommended, there is still a risk of damage);
- Try to stay as far away from some of the TTL protocols where the physical layer is also 2.4GHz, e.g. USB3.0;
- When the module is installed inside the chassis, a high-quality antenna extension cord can be used to extend the antenna to the outside of the chassis and preferably vertically upwards.

Chapter 9 Frequently Asked Questions

9.1 The transmission distance is not ideal

• When there is a linear communication obstacle, the communication distance will be attenuated accordingly;

- Temperature, humidity, and the same frequency interference will lead to increased communication packet loss rate;
- The ground absorbs and reflects radio waves, and the test effect near the ground is poor;
- Seawater has a strong ability to absorb radio waves, so the seaside test effect is poor;
- If there is a metal object near the antenna, or placed in a metal shell, the signal attenuation will be very serious;
- The power register is set incorrectly, the air rate is set too high (the higher the air rate, the closer the distance);
- The low voltage of the power supply at room temperature is lower than the recommended value, and the lower the voltage, the smaller the power;
- The antenna used matches the module poorly or the quality of the antenna itself is a problem.

9.2 The module is easily damaged

- Please check the power supply to ensure that between the recommended supply voltages, if the maximum value is exceeded, the module will be permanently damaged;
- Please check the stability of the power supply, the voltage can not fluctuate greatly and frequently;
- Please ensure that the installation and use of the process of anti-static operation, high frequency device static sensitivity;
- Please ensure that the humidity during installation and use should not be too high, some components are humidity sensitive devices;
- If there is no special demand, it is not recommended to use it at too high or too low temperatures.

9.3 The bit error rate is too high

- There is co-frequency signal interference nearby, stay away from the source of interference or modify the frequency and channel to avoid interference;
- Poor power supply may also cause garbled code, it is necessary to ensure the reliability of the power supply;
- Poor or too long extension lines and feeders can also cause high bit error rates.

Chapter 10 Welding Work Guidance

This product is an in-line module, welding personnel must work in accordance with the discharge operation specifications when welding the module;

This product is an electrostatic sensitive product, and if the module is not welded according to fouls, the module may be permanently damaged.

Chapter 11 Related Models

D I 4	CI :	Carrier	Transmit	Test			Product	
Product	Chip	frequency	power	distance	Air rate	Encapsulated	size	Features
model	solution	Hz	dBm	km	вря	IOTIII	mm	

F34-2G4D20D	nRF24I 01+	2.4G	20	2.0	250k~2M	In-line	21 * 36	Full-duplex, file
<u>L34-204D20D</u>		2.40	20	2.0	230K * 21VI	m-me	21 50	transfer
								Automatic
E24 2C4U20D	"DE24L01	2.40	20	2.5	250k~2M	In-line	21 * 36	frequency hopping
<u>E34-2G4H20D</u>	IIKF24L01+	2.40						and
								anti-interference
		2.4G	27	5.0	2501 214	In-line	21 * 36	Automatic
<u>E34-2G4H27D</u>								frequency hopping
	nKF24L01+				230K~2IVI			and
								anti-interference

Chapter 12 Antenna Guide

Antenna is an important role in the communication process, often inferior antenna will have a great impact on the communication system, so our company recommends some antennas as supporting our wireless modules and performance is better and more reasonable price.

Duodu et model	tuno	Band	gain	size	Feeder	interface	n continuity
r rouuct model	type	Hz	dBi	mm	cm	Interface	pecunarity
<u>TX2400-NP-5010</u>	Flexible	2.4G	2.0	10x50	-	IPEX	Flexible FPC soft antenna
	antenna						
<u>TX2400-JZ-3</u>	Glue rod	2.4G	2.0	30	-	SMA-J	Ultra-short straight,
	antenna						omnidirectional antenna
<u>TX2400-JZ-5</u>	Glue rod	2.4G	2.0	50	-	SMA-J	Ultra-short straight,
	antenna						omnidirectional antenna
<u>TX2400-JW-5</u>	Glue rod	2.4G	2.0	50	-	SMA-J	Fixed bent, omnidirectional
	antenna						antenna
<u>TX2400-JK-11</u>	Glue rod	2.4G	2.5	110	-	SMA-J	Bending glue rod, omnidirectional
	antenna						antenna
<u>TX2400-JK-20</u>	Glue rod	2.4G	3.0	200	-	SMA-J	Bending glue rod, omnidirectional
	antenna						antenna
TX2400-XPL-150	Suction cup	2.4G	3.5	150	150	SMA-J	Small suction cup antenna,
	antenna						cost-effective

Chapter 13 Bulk Packaging Methods

Revision history

version	Revision date	Revision description	Maintainers
v1.0	2022-9-19	Initial version	Yan
V1.1	2023-9-26	error corrected	Bin

About us

Technical support: support@cdebyte.com

Documents and RF Setting download link: https://www.cdebyte.com

Thank you for using Ebyte products! Please contact us with any questions or suggestions: info@cdebyte.com

Web: https://www.cdebyte.com

Address: B5 Mould Industrial Park, 199# Xiqu Ave, High tech Zone, Chengdu, Sichuan, China

(((•))) [®] **EBYTE** Chengdu Ebyte Electronic Technology Co.,Ltd.