

Air Quality Module(TTL Serial Port)

SM-VOC-P01 Ver 2.1

Contents

Chapter 1 Product Introduction错误!	未定义书签。
1.1 Product Overview错误!	未定义书签。
1.2 Features错误!	未定义书签。
1.3 Main Parameters错误!	未定义书签。
1.4 System Frame Diagram错误!	未定义书签。
1.5 Product Selection错误!	未定义书签。
Chapter 2 Configuring Software Installation and Use错误!	未定义书签。
2.1 Connect the Sensor to the Computer错误!	未定义书签。
2.2 The Use of Sensor Monitoring Software	5
Chapter 3 Communication Protocol错误!	未定义书签。
3.1 Basic Communication Parameters 错误!	未定义书签。
3.2 Data Frame Format Definition错误!	未定义书签。
3.3 Register Address错误!	未定义书签。
3.4 Communication Protocol Example and Explanation 错误!	
Chapter 4 Precautions错误!	未定义书签。

Chapter 1 Product Introduction

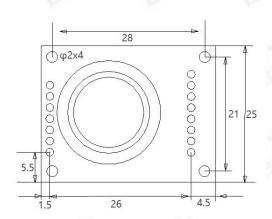
1.1 Product Overview

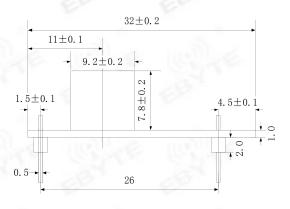
This module is widely used in air purifiers, fresh air ventilation systems, intelligent integrated ceilings, air quality monitors, ventilation fans, air conditioners, etc. It is mainly used for the detection of air quality. It has high sensitivity for various low-concentration pollutants in the air, such as cigarettes, odors from cooking, TVOC (gas volatile from organic solvents), etc. This uses advanced gas sensors and scientific software processing to achieve control closer to human senses and to detect the level of air pollution.

1.2 Features

This product adopts high-sensitivity semiconductor probe with stable signal and high precision. Low power consumption, long life, high selectivity to low concentration gas, high sensitivity to cigarette or cooking odor and organic solvent volatilized gas.

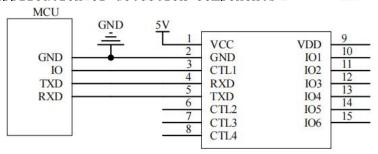
1.3 Main Parameters


Gas	Formaldehyde, benzene, carbon		
Detection	monoxide, hydrogen, alcohol,		
600	ammonia, cigarette smoke,		
	essence, etc.		
Sensor Type	Semiconductor		
EB	(Optional Figaro sensor)		
Interface Type	8pin and 7pin 2.0mm pin header		
Signal	TTL serial port (Modbus-RTU		
Output	protocol)		
Output	0∼10 pollution signal		
Data			
Output	1. TTL serial port		
Data Type	2. Level pulse signal		
Working	DC 4.8V∼5.3V		
voltage			
Working	≤60mA		



Current				
Response	≤20 s			
Time				
Recovery	≤60 s			
Time				
Warm-up	≤3minutes			
Time				
Operating	Temperature: 0∼50 °C			
Environme	Humidity: ≤95% RH			
nt				
Storage	Temperature: -20∼60 °C			
Environme	Humidity: ≤60% RH			
nt				
Dimensions	32mm×25mm×15mm			

Pin Function Description


NO.	Name	Function		
1	VCC	5V module power input		
2	GND	Ground		

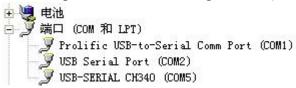
3 0	CTL1	level pulse sign	al		
		高 ms	低 ms	污染等级	
		0	100	0	
		10	90	1	
		20	80	2	
		30	70	3	
		40	60	4	
		50	50	5	
		60	40	6	
		70	30	7	
		80	20	8	
		90	10	9	
		100	0	10	
4	RXD	Serial port RXI	O data receivi	ng pin	
5	TXD	Serial port TXI	O data transmi	ission pin	
Other	NC	Reserve			

1.4 System Frame Diagram

Principles of application of detection components

1.5 Product Selection

SM-	9	EST	8	company code		
	VOC-			Methane (natural gas)		
	STE	P01	E I	TTL serial communication (Modbus-RTU protocol)		
	an L	N01-	e e	485 serial communication (Modbus-RTU protocol)		
			8	Rail-mount shell		


Chapter 2 Configuring Software Installation and Use

Our company provides supporting "sensor monitoring software", which can easily use the computer to read the parameters of the sensor, and flexibly modify the device ID and address of the sensor.

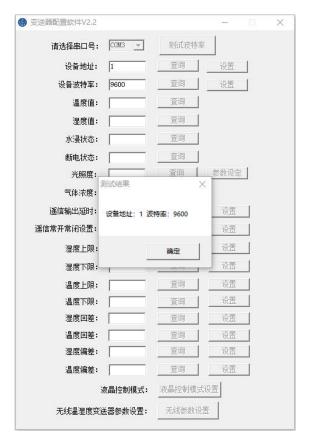
Note that there is only one sensor on the bus when using automatic acquisition by software.

2.1 Connect the Sensor to the Computer

After the sensor is correctly connected to the computer via USB to TTL and provides power, the correct COM port can be seen in the computer (check the COM port in "My Computer - Properties - Device Manager - Port").

Open the data package, select "Debugging Software"---"Parameter Configuration

Software", find ControlV22.exe and open it.


If the COM port is not found in the device manager, it means that you have not installed the USB to TTL driver (included in the data package) or the driver has not been installed correctly, please contact a technician for help.

2.2 The Use of Sensor Monitoring Software

- ①. The configuration interface is shown in the figure. First, obtain the serial port number and select the correct serial port according to the method in chapter 3.1.
- (2). Click the test baud rate of the software, the software will test the baud rate and address of the current device, the default baud rate is 9600bit/s, and the default address is 0x01.
- ③ Modify the address and baud rate according to the needs of use, and at the same time, you can query the current functional status of the device.
- ④. If the test is unsuccessful, please re-check the equipment wiring and driver installation.

Co 5

Chapter 3 Communication Protocol

3.1 Basic Communication Parameters

Encoding	8-bit binary			
Data Bits	8 bits			
Parity Bit	None			
Stop Bit	1 bit			
Error Check	CRC (Redundant Cyclic Code)			
D ID (2400bit/s, 4800bit/s, 9600 bit/s can be set, the factory default is			
Baud Rate	9600bit/s			

3.2 Data Frame Format Definition

Using Modbus-RTU communication protocol, the format is as follows:

Initial structure ≥4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

Time to end structure \geq 4 bytes

Address code: the address of the transmitter, which is unique in the communication network (factory default 0x01).

Function code:

Function Meaning		Operable register address
code		
0x03	Read register data	$0x02$, $0x100 \sim 0x10D$
0x10	Write multiple registers	0x102~0x10D

Data area: The data area is the specific communication data, pay attention to the high byte of the 16b data first!

CRC code: two-byte check code.

Host query frame structure:

Address C	Function C	Register Start A	Register Leng	Check code 1	Check code hig
ode	ode	ddress Register	th	ow bit	h bit
1byte	1byte	2byte	2byte	1 byte	1byte

Slave response frame structure:

Address Code		Number of Valid Bytes	Data Area	Data Area 2	Data Area N	Check Code
1byte	1byte	1byte	2byte	2byte	2byte	2byte

3.3 Register Address

Register	Quantity	Meaning	Status	Data Range
Address				
0x02	1	Gas Concentration	Read Only	0∼10000PPM
0x100	1	Device Model	Read Only	0∼0xFFFF
0x101	1	Device Software	Read Only	0∼0xFFFF
		Version		
0x102	10	Device Name	Read&Write	0∼0xFFFF
0x10C	1	Device address	Read&Write	0∼0xFF
0x10D	1	Serial Port attribute	Read&Write	See serial port

				attribute register
--	--	--	--	--------------------

Serial port properties:

Data Bits	Meaning	
BIT15~BIT8	Parity check selection	
	0: No verification (Factory Default)	
	1: odd parity	
	2: Even parity	
BIT7~BIT0	Baud rate selection	
	0: 1200bps	
	1: 2400bps	
	2: 4800bps	
	3: 9600bps (Factory Default)	
	4: 19200bps	

3.4 Communication Protocol Example and Explanation

Example 1: Read the gas concentration value of device address 0x01

Query frame (Hexadecimal):

Address Code	Function C ode	Starting Address	Data Length	Check Code Low	Check Code High
0x01	0x03	0x00 0x02	0x00 0x01	0x25	0xCA

Response frame (hexadecimal):

Address Code	Function Co	Return valid number of b ytes	Gas concen tration value	Check Code Low	Check Code High
0x01	0x03	0x02	0x00 0x03	0xF8	0x45

Gas concentration calculation:

Concentration: 0003 H (hexadecimal) = pollution level 3

Example 2: Modify the device address 0x01 to 0x02

Query frame (hexadecimal):

				Number of		
Address	Function	Starting Addres	Data Lengt	bytes in the		Charle Cada
Code	Code	S	h	data area	Data Area	Check Code
				(2*N)		

Response frame (hexadecimal):

Address Code	Function Co	Starting Add ress	Data Length	Check Code Low	Check Code High
0x01	0x10	0x01 0x0C	0x00 0x01	0xC0	0x36

Chapter 4 Precautions

- 1. Situations that must be avoided
- 1.1 Exposure to Volatile Silicon Compound Vapors

Avoid exposure of modules to silicone adhesives, hairspray, silicone rubber, putty, or other locations where volatile silicone compounds are present. Otherwise, the sensitivity of the module will decrease or even not respond.

1.2 Highly corrosive environment

Exposing the module to high concentrations of corrosive gases (such as H2S, SOX, C12, HC1, etc.) will cause corrosion or damage to the sensor heating materials and sensor leads in the module, and cause irreversible deterioration of the performance of sensitive materials. changes, which in turn affects the performance and accuracy of the module.

1.3 Exposure to water

If the sensor in the module is splashed or immersed in water, the sensitive characteristics of the sensor will be degraded, which will affect the measurement accuracy of the module.

1.4 Freezing

The freezing on the surface of the sensor sensitive material of the module will cause the sensitive layer to be broken and lose the sensitive characteristics.

- 2. Situations to avoid as much as possible
 - 2.1 Condensed water

Under indoor use conditions, slight condensation will have a slight effect on the sensor performance in the module. However, if water condenses on the surface of the sensitive layer and remains for a period

of time, the sensor characteristics in the module will decrease, and the measurement error of the module will also increase.

2.2 In high concentration gas

Regardless of whether the module is powered on or not, long-term placement in high-concentration gas will affect the sensor characteristics in the module. If the lighter gas is directly sprayed to the sensor in the module, it will cause great damage to the sensor in the module and will cause the sensitivity of the module to decrease.

2.3 Long-term storage

When the module is stored for a long time without being powered on, the resistance of its sensor will drift reversibly, and this drift is related to the storage environment. Modules should be stored in airtight bags free of volatile silicone compounds. Modules that have been stored for a long period of time require longer power—ups to stabilize before use.

2.4 Long-term exposure to extreme environments

Regardless of whether the module is powered on or not, if it is exposed to extreme conditions for a long time, such as extreme conditions such as high humidity, high temperature or high pollution, the performance of the module will be seriously affected.

- 3. Before installing the module, make sure that the conformal paint on the control board is completely dry.
- 4. If you need to reset the alarm value of the module, you can contact our sales staff.